MY SEARCH ENGINE

Friday, September 7, 2012

NASA's Global Hawk Hurricane Mission Kicks Off

MEDIA RELATIONS OFFICE
JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
PASADENA, CALIF. 91109 PHONE 818-354-5011
http://www.jpl.nasa.gov

Alan Buis 818-354-0474
Jet Propulsion Laboratory, Pasadena, Calif.
alan.d.buis@jpl.nasa.gov

Steve Cole 202-358-0918
NASA Headquarters, Washington
Stephen.e.cole@nasa.gov

Keith Koehler 757-824-1579
NASA Wallops Flight Facility, Wallops Island, Va.
keith.a.koehler@nasa.gov

News release: 2012-281 Sept. 7, 2012

NASA's Global Hawk Hurricane Mission Kicks Off

The full version of this story with accompanying images is at:
http://www.jpl.nasa.gov/news/news.php?release=2012-281&cid=release_2012-281

PASADENA, Calif. – NASA has begun its latest hurricane science field campaign by flying an
unmanned Global Hawk aircraft over Hurricane Leslie in the Atlantic Ocean during a day-long flight
that began in California and ended in Virginia. With the Hurricane and Severe Storm Sentinel (HS3)
mission, NASA for the first time will be flying Global Hawks from the U.S. East Coast.

The Global Hawk took off from NASA's Dryden Flight Research Center at Edwards Air Force Base,
Calif., Thursday and landed at the agency's Wallops Flight Facility on Wallops Island, Va., today at
8:37 a.m. PDT (11:37 a.m. EDT) after spending 10 hours collecting data on Hurricane Leslie. The
month-long HS3 mission will help researchers and forecasters uncover information about how
hurricanes and tropical storms form and intensify.

NASA will fly two Global Hawks from Wallops during the HS3 mission. The planes, which can stay
in the air for as long as 28 hours and fly over hurricanes at altitudes greater than 60,000 feet (18,288
meters), will be operated by pilots in ground control stations at Wallops and Dryden Flight Research
Center at Edwards Air Force Base, Calif.

The mission targets the processes that underlie hurricane formation and intensity change. The aircraft
help scientists decipher the relative roles of the large-scale environment and internal storm processes
that shape these systems. Studying hurricanes is a challenge for a field campaign like HS3 because of
the small sample of storms available for study and the great variety of scenarios under which they
form and evolve. HS3 flights will continue into early October of this year and be repeated from
Wallops during the 2013 and 2014 hurricane seasons.

The first Global Hawk arrived Sept. 7 at Wallops carrying a payload of three instruments that will
sample the environment around hurricanes. A second Global Hawk, scheduled to arrive in two weeks,
will look inside hurricanes and developing storms with a different set of instruments. The pair will
measure winds, temperature, water vapor, precipitation and aerosols from the surface to the lower
stratosphere.

"The primary objective of the environmental Global Hawk is to describe the interaction of tropical
disturbances and cyclones with the hot, dry and dusty air that moves westward off the Saharan desert
and appears to affect the ability of storms to form and intensify," said Scott Braun, HS3 mission
principal investigator and research meteorologist at NASA's Goddard Space Flight Center in
Greenbelt, Md.

This Global Hawk will carry a laser system called the Cloud Physics Lidar (CPL), the Scanning
High-resolution Interferometer Sounder (S-HIS), and the Advanced Vertical Atmospheric Profiling
System (AVAPS).

The CPL will measure cloud structure and aerosols such as dust, sea salt and smoke particles. The S-
HIS can remotely sense the temperature and water vapor vertical profile along with the sea surface
temperature and cloud properties. The AVAPS dropsonde system will eject small sensors tied to
parachutes that drift down through the storm, measuring winds, temperature and humidity.

"Instruments on the 'over-storm' Global Hawk will examine the role of deep thunderstorm systems in
hurricane intensity change, particularly to detect changes in low-level wind fields in the vicinity of
these thunderstorms," said Braun.

These instruments will measure eyewall and rainband winds and precipitation using a Doppler radar
and other microwave sensors called the High-altitude Imaging Wind and Rain Airborne Profiler
(HIWRAP); the High-Altitude MMIC Sounding Radiometer (HAMSR), developed by NASA's Jet
Propulsion Laboratory, Pasadena, Calif.; and the Hurricane Imaging Radiometer (HIRAD).

HIWRAP measures cloud structure and winds, providing a three-dimensional view of these
conditions. HAMSR uses microwave wavelengths to measure temperature, water vapor and
precipitation from the top of the storm to the surface. HIRAD measures surface wind speeds and rain
rates.

"HAMSR was the first complete scientific instrument to come out of NASA's Instrument Incubator
Program," said Bjorn Lambrigtsen, HAMSR principal investigator at JPL. "An advanced version of
instruments currently flying on satellites such as NASA's Suomi NPP, HAMSR provides a much
more detailed view of the atmospheric conditions in a hurricane than is possible from satellites.
HAMSR is one of a number of airborne instruments developed by JPL that are being used to carry
out research in a variety of areas."

The HS3 mission is supported by several NASA centers, including Wallops; Goddard; Dryden; Ames
Research Center, Moffett Field, Calif.; Marshall Space Flight Center, Huntsville, Ala.; and JPL. HS3
also has collaborations with partners from government agencies and academia.

HS3 is an Earth Venture mission funded by NASA's Science Mission Directorate in Washington.
Earth Venture missions are managed by NASA's Earth System Science Pathfinder Program at the
agency's Langley Research Center in Hampton, Va. The HS3 mission is managed by the Earth
Science Project Office at NASA's Ames Research Center.

For more about the HS3 mission, visit: http://www.nasa.gov/HS3 . For more on HAMSR, visit:
http://microwavescience.jpl.nasa.gov/instruments/hamsr/ . For more on NASA's Airborne Science
Program, visit: http://airbornescience.nasa.gov .

The California Institute of Technology in Pasadena manages JPL for NASA.

-end-


To remove yourself from this mailing, please go to http://www.kintera.org/TR.asp?a=dlLTJeNWLlJ4LgO4F&s=lvL4JaORIhLQL9PXIvE&m=dgIOJVPzFiKSKaJ

To remove yourself from all mailings from NASA Jet Propulsion Laboratory, please go to http://www.kintera.org/TR.asp?a=6oIFJTOuGeIQJWNDH&s=lvL4JaORIhLQL9PXIvE&m=dgIOJVPzFiKSKaJ

No comments: