MY SEARCH ENGINE

Thursday, November 13, 2008

Hubble Directly Observes a Planet Orbiting Another Star

MEDIA RELATIONS OFFICE
JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
PASADENA, CALIFORNIA 91109. TELEPHONE 818-354-5011
http://www.jpl.nasa.gov

Whitney Clavin 818-354-4673
Jet Propulsion Laboratory, Pasadena, Calif.
whitney.clavin@jpl.nasa.gov

J.D. Harrington 202-358-5241
NASA Headquarters, Washington
j.d.harrington@nasa.gov

NEWS RELEASE: 2008-211 Nov. 13, 2008

Hubble Directly Observes a Planet Orbiting Another Star

PASADENA, Calif. -- NASA's Hubble Space Telescope has taken the first visible-light snapshot
of a planet circling another star. The team of astronomers who made the discovery includes
researchers at NASA's Jet Propulsion Laboratory, Pasadena, Calif.

Estimated to be no more than three times Jupiter's mass, the planet, called Fomalhaut b, orbits
the bright southern star Fomalhaut, located 25 light-years away in the constellation Piscis
Australis, or the "Southern Fish."

Fomalhaut has been a candidate for planet hunting ever since an excess of dust was discovered
around the star in the early 1980s by NASA's Infrared Astronomy Satellite.

In 2004, the coronagraph in the High Resolution Camera on Hubble's Advanced Camera for
Surveys produced the first-ever resolved visible-light image of the region around Fomalhaut. It
clearly showed a ring of protoplanetary debris approximately 21.5 billion miles (34.6 billion
kilometers) across and having a sharp inner edge.

This large debris disk is similar to the Kuiper Belt, which encircles our solar system and contains
a range of icy bodies from dust grains to objects the size of dwarf planets, such as Pluto.

Hubble astronomer Paul Kalas, of the University of California at Berkeley, and team members
proposed in 2005 that the ring was being gravitationally modified by a planet lying between the
star and the ring's inner edge.

Circumstantial evidence came from Hubble's confirmation that the ring is offset from the center
of the star. The sharp inner edge of the ring is also consistent with the presence of a planet that
gravitationally "shepherds" ring particles. Independent researchers have subsequently reached
similar conclusions.

Now, Hubble has actually photographed a point source of light lying 1.8 billion miles (2.9 billion
kilometers) inside the ring's inner edge. The results are being reported in the November 14 issue
of Science magazine.

"Our Hubble observations were incredibly demanding. Fomalhaut b is 1 billion times fainter than
the star. We began this program in 2001, and our persistence finally paid off," Kalas said.

"Fomalhaut is the gift that keeps on giving. Following the unexpected discovery of its dust ring,
we have now found an exoplanet at a location suggested by analysis of the dust ring's shape. The
lesson for exoplanet hunters is 'follow the dust,'" said team member Mark Clampin of NASA's
Goddard Space Flight Center in Greenbelt, Md.

Observations taken 21 months apart by Hubble's Advanced Camera for Surveys' coronagraph
show that the object is moving along a path around the star, and is therefore gravitationally
bound to it. The planet is 10.7 billion miles (17.2 billion kilometers) from the star, or about 10
times the distance of the planet Saturn from our sun.

The planet Fomalhaut b is brighter than expected for an object of three Jupiter masses. One
possibility is that it has a Saturn-like ring of ice and dust reflecting starlight. The ring might
eventually coalesce to form moons. The ring's estimated size is comparable to the region around
Jupiter and its four largest orbiting satellites.

Kalas and his team first used Hubble to photograph Fomalhaut in 2004, and made the unexpected
discovery of its debris disk, which scatters Fomalhaut's starlight. At the time they noted a few
bright sources in the image as planet candidates. A follow-up image in 2006 showed that one of
the objects is moving through space with Fomalhaut, but changed position relative to the ring
since the 2004 exposure. The amount of displacement between the two exposures is exactly as
predicted and corresponds to an 872-year-long orbit as calculated from Kepler's laws of
planetary motion.

Future observations will attempt to see the planet in infrared light and will look for evidence of
water vapor clouds in the atmosphere. This would yield clues to the evolution of a comparatively
newborn 100-million-year-old planet. Astrometric measurements of the planet's orbit will
provide enough precision to yield an accurate mass.

NASA's James Webb Space Telescope, scheduled to launch in 2013, will be able to make
coronagraphic observations of Fomalhaut in near- and mid-infrared wavelengths. Webb will be
able to hunt for other planets in the system and probe the region interior to the dust ring for
structures such as an inner asteroid belt.

The California Institute of Technology in Pasadena, Calif., manages JPL for NASA.

More information about the Hubble Space Telescope is online at http://www.nasa.gov/hubble .
More information about JPL is online at http://www.jpl.nasa.gov .

-end-

To remove yourself from this mailing, please go to http://www.kintera.org/TR.asp?a=guIRJcPTKkL4IoI&s=ggJUKVMxGcLGLUODIqH&m=jsJVI6NIJgK1G

To remove yourself from all mailings from NASA Jet Propulsion Laboratory, please go to http://www.kintera.org/TR.asp?a=cqLJI0NDLhIOK3J&s=ggJUKVMxGcLGLUODIqH&m=jsJVI6NIJgK1G

No comments: