MY SEARCH ENGINE

Wednesday, June 13, 2012

Small Planets Don’t Need ‘Heavy Metal’ Stars to Form

MEDIA RELATIONS OFFICE
JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
PASADENA, CALIF. 91109. PHONE 818-354-5011
http://www.jpl.nasa.gov

Whitney Clavin 818-354-4673
Jet Propulsion Laboratory, Pasadena, Calif.
whitney.clavin@jpl.nasa.gov

J.D. Harrington 202-358-5241
Headquarters, Washington
j.d.harrington@nasa.gov

Michele Johnson 650-604-6982
NASA Ames Research Center, Moffett Field, Calif.
michele.johnson@nasa.gov

News release: 2012-171 June 13, 2012

Small Planets Don't Need 'Heavy Metal' Stars to Form

The full version of this story with accompanying images is at:
http://www.jpl.nasa.gov/news/news.cfm?release=2012-171&cid=release_2012-171

PASADENA, Calif. – The formation of small worlds like Earth previously was thought to occur
mostly around stars rich in heavy elements such as iron and silicon. However, new ground-based
observations, combined with data collected by NASA's Kepler space telescope, show small
planets form around stars with a wide range of heavy element content and suggest they may be
widespread in our galaxy.

A research team led by Lars A. Buchhave, an astrophysicist at the Niels Bohr Institute and the
Centre for Star and Planet Formation at the University of Copenhagen, studied the elemental
composition of more than 150 stars harboring 226 planet candidates smaller than Neptune.

"I wanted to investigate whether small planets needed a special environment in order to form,
like the giant gas planets, which we know preferentially develop in environments with a high
content of heavy elements," said Buchhave. "This study shows that small planets do not
discriminate and form around stars with a wide range of heavy metal content, including stars
with only 25 percent of the sun's metallicity."

Astronomers refer to all chemical elements heavier than hydrogen and helium as metals. They
define metallicity as the metal content of heavier elements in a star. Stars with a higher fraction
of heavy elements than the sun are considered metal-rich. Stars with a lower fraction of heavy
elements are considered metal-poor.

Planets are created in disks of gas and dust around new stars. Planets like Earth are composed
almost entirely of elements such as iron, oxygen, silicon and magnesium. The metallicity of a
star mirrors the metal content of the planet-forming disk. Astronomers have hypothesized that
large quantities of heavy elements in the disk would lead to more efficient planet formation. It
has long been noted that giant planets with short orbital periods tend to be associated with metal-
rich stars.

Unlike gas giants, the occurrence of smaller planets is not strongly dependent on the heavy
element content of their host stars. Planets up to four times the size of Earth can form around
stars with a wide range of heavy element content, including stars with a lower metallicity than
the sun. The findings are described in a new study published in the journal Nature.

"Kepler has identified thousands of planet candidates, making it possible to study big-picture
questions like the one posed by Lars. Does nature require special environments to form Earth-
size planets?" said Natalie Batalha, Kepler mission scientist at NASA's Ames Research Center at
Moffett Field, Calif. "The data suggest that small planets may form around stars with a wide
range of metallicities -- that nature is opportunistic and prolific, finding pathways we might
otherwise have thought difficult."

The ground-based spectroscopic observations for this study were made at the Nordic Optical
Telescope on La Palma in the Canary Islands; Fred Lawrence Whipple Observatory on Mt.
Hopkins in Arizona; McDonald Observatory at the University of Texas at Austin; and W.M.
Keck Observatory atop Mauna Kea in Hawaii.

Launched in March 2009, Kepler searches for planets by continuously monitoring more than
150,000 stars, looking for telltale dips in their brightness caused by passing, or transiting,
planets. At least three transits are required to verify a signal as a planet. Follow-up observations
from ground-based telescopes are also needed to confirm a candidate as a planet.

Ames manages Kepler's ground system development, mission operations and science data
analysis. NASA's Jet Propulsion Laboratory in Pasadena, Calif., managed the Kepler mission
development. JPL is managed by the California Institute of Technology, also in Pasadena, for
NASA.

Ball Aerospace & Technologies Corp. in Boulder, Colo., developed the Kepler flight system and
supports mission operations with the Laboratory for Atmospheric and Space Physics at the
University of Colorado in Boulder.

The Space Telescope Science Institute in Baltimore archives, hosts and distributes Kepler
science data. Kepler is NASA's 10th Discovery Mission and is funded by NASA's Science
Mission Directorate at the agency's headquarters in Washington.

For more information about the Kepler mission, visit: http://www.nasa.gov/kepler .

-end-


To remove yourself from this mailing, please go to http://www.kintera.org/TR.asp?a=5oIKJXOuGfIHJSNHH&s=eeLQLPPpGaICJOPvHoE&m=glLTJbORKjL3LoI

To remove yourself from all mailings from NASA Jet Propulsion Laboratory, please go to http://www.kintera.org/TR.asp?a=bkLWIfMSLlJUL2NWE&s=eeLQLPPpGaICJOPvHoE&m=glLTJbORKjL3LoI

No comments: