MY SEARCH ENGINE

Tuesday, January 10, 2012

Stars Pop Onto the Scene in New WISE Image

MEDIA RELATIONS OFFICE
JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
PASADENA, CALIF. 91109 PHONE 818-354-5011
http://www.jpl.nasa.gov

Whitney Clavin 818-354-4673
Jet Propulsion Laboratory, Pasadena, Calif.
whitney.clavin@jpl.nasa.gov

Trent J. Perrotto 202-358-0321
NASA Headquarters, Washington
trent.j.perrotto@nasa.gov

News release: 2012-008 Jan. 10, 2012

Stars Pop Onto the Scene in New WISE Image

The full version of this story with accompanying images is at:
http://www.jpl.nasa.gov/news/news.cfm?release=2012-008&cid=release_2012-008

PASADENA, Calif. -- A new, large mosaic from NASA's Wide-Field Infrared Survey Explorer
(WISE) showcases a vast stretch of cosmic clouds bubbling with new star birth. The region -- a
1,000-square-degree chunk of our Milky Way galaxy -- is home to numerous star-forming
clouds, where massive stars have blown out bubbles in the gas and dust.

"Massive stars sweep up and destroy their natal clouds, but they continuously spark new stars to
form along the way," said WISE Mission Scientist Dave Leisawitz of NASA Goddard Space
Flight Center, Greenbelt, Md. Leisawitz is co-author of a new paper reporting the results in the
Astrophysical Journal. "Occasionally a new, massive star forms, perpetuating the sequence of
events and giving rise to the dazzling fireworks display seen in this WISE mosaic."

The new image is online at:
http://www.nasa.gov/mission_pages/WISE/multimedia/pia15256.html .

The WISE space telescope mapped the entire sky two times in infrared light, completing its
survey in February of 2011. Astronomers studying how stars form took advantage of WISE's all-
encompassing view by studying several star-forming clouds, or nebulae, including 10 pictured in
this new view.

The observations provide new evidence for a process called triggered star formation, in which
the winds and sizzling radiation from massive stars compress gas and dust, inducing a second
generation of stars. The same winds and radiation carve out the cavities, or bubbles, seen
throughout the image.

Finding evidence for triggered star formation has proved more difficult than some might think.
Astronomers are not able to watch the stars grow and evolve like biologists watching zebras in
the wild. Instead, they piece together a history of star formation by looking at distinct stages in
the process. It's the equivalent of observing only baby, middle-aged and elderly zebras with
crude indicators of their ages. WISE is helping to fill in these gaps by providing more and more
"specimens" for study.

"Each region we looked at gave us a single snapshot of star formation in progress," said Xavier
Koenig, lead author of the new study at Goddard, who presented the results today in Austin,
Texas, at the 219th meeting of the American Astronomical Society. "But when we look at a
whole collection of regions, we can piece together the chain of events."

After looking at several of the star-forming nebulae, Koenig and his colleagues noticed a pattern
in the spatial arrangement of newborn stars. Some were found lining the blown-out cavities, a
phenomenon that had been seen before, but other new stars were seen sprinkled throughout the
cavity interiors. The results suggest that stars are born in a successive fashion, one after the
other, starting from a core cluster of massive stars and moving steadily outward. This lends
support to the triggered star formation theory, and offers new clues about the physics of the
process.

The astronomers also found evidence that the bubbles seen in the star-forming clouds can spawn
new bubbles. In this scenario, a massive star blasts away surrounding material, eventually
triggering the birth of another star massive enough to carve out its own bubble. A few examples
of what may be first- and second-generation bubbles can be seen in the new WISE image.

"I can almost hear the stars pop and crackle," said Leisawitz.

The complete WISE catalogue will be released to the public astronomy community in the spring
of 2012.

NASA's Jet Propulsion Laboratory, Pasadena, Calif., manages, and operated WISE for NASA's
Science Mission Directorate. The spacecraft was put into hibernation mode after it scanned the
entire sky twice, completing its main objectives. Edward Wright is the principal investigator and
is at UCLA. The mission was selected competitively under NASA's Explorers Program managed
by the agency's Goddard Space Flight Center in Greenbelt, Md. The science instrument was built
by the Space Dynamics Laboratory in Logan, Utah. The spacecraft was built by Ball Aerospace
& Technologies Corp. in Boulder, Colo. Science operations and data processing take place at the
Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena.
Caltech manages JPL for NASA.

More information is online at http://www.nasa.gov/wise and http://wise.astro.ucla.edu and
http://jpl.nasa.gov/wise .

-end-


To remove yourself from this mailing, please go to http://www.kintera.org/TR.asp?a=atLMJ1MJIcIMI8M1F&s=ggIUJVMxFcLGKUPDKqG&m=hrITI0NGLmJVLbI

To remove yourself from all mailings from NASA Jet Propulsion Laboratory, please go to http://www.kintera.org/TR.asp?a=6pKELPOtG8IFKONCG&s=ggIUJVMxFcLGKUPDKqG&m=hrITI0NGLmJVLbI

No comments: