Feature March 16, 2010
The full version of this story with accompanying images is at: http://www.jpl.nasa.gov/news/news.cfm?release=2010-086&cid=release_2010-086
New thermal images from powerful ground-based telescopes show swirls of warmer air
and cooler regions never seen before within Jupiter's Great Red Spot, enabling scientists
to make the first detailed interior weather map of the giant storm system.
The observations reveal that the reddest color of the Great Red Spot corresponds to a
warm core within the otherwise cold storm system, and images show dark lanes at the
edge of the storm where gases are descending into the deeper regions of the planet. These
types of data, detailed in a paper appearing in the journal Icarus, give scientists a sense of
the circulation patterns within the solar system's best-known storm system.
"This is our first detailed look inside the biggest storm of the solar system," said Glenn
Orton, a senior research scientist at NASA's Jet Propulsion Laboratory in Pasadena,
Calif., who was one of the authors of the paper. "We once thought the Great Red Spot
was a plain old oval without much structure, but these new results show that it is, in fact,
extremely complicated."
Sky gazers have been observing the Great Red Spot in one form or another for hundreds
of years, with continuous observations of its current shape dating back to the 19th century. The spot, which is a cold region averaging about 110 Kelvin (minus 260 degrees
Fahrenheit) is so wide about three Earths could fit inside its boundaries.
The thermal images obtained by giant 8-meter (26-foot) telescopes used for this study --
the European Southern Observatory's Very Large Telescope in Chile, the Gemini
Observatory telescope in Chile and the National Astronomical Observatory of Japan's
Subaru telescope in Hawaii -- have provided an unprecedented level of resolution and
extended the coverage provided by NASA's Galileo spacecraft in the late 1990s.
Together with observations of the deep cloud structure by the 3-meter (10-foot) NASA
Infrared Telescope Facility in Hawaii, the level of thermal detail observed from these
giant observatories is comparable to visible-light images from NASA's Hubble Space
Telescope for the first time.
One of the most intriguing findings shows the most intense orange-red central part of the
spot is about 3 to 4 Kelvin (5 to 7 degrees Fahrenheit) warmer than the environment
around it, said Leigh Fletcher, the lead author of the paper, who completed much of the
research as a postdoctoral fellow at JPL and is currently a fellow at the University of
Oxford in England. This temperature differential might not seem like a lot, but it is
enough to allow the storm circulation, usually counter-clockwise, to shift to a weak
clockwise circulation in the very middle of the storm. Not only that, but on other parts of
Jupiter, the temperature change is enough to alter wind velocities and affect cloud
patterns in the belts and zones.
"This is the first time we can say that there's an intimate link between environmental
conditions -- temperature, winds, pressure and composition – and the actual color of the
Great Red Spot," Fletcher said. "Although we can speculate, we still don't know for sure
which chemicals or processes are causing that deep red color, but we do know now that it
is related to changes in the environmental conditions right in the heart of the storm."
Unlocking the secrets of Jupiter's giant storm systems will be one of the targets for
infrared spacecraft observations from future missions including NASA's Juno mission.
2010-086
-end-
To remove yourself from this mailing, please go to http://www.kintera.org/TR.asp?a=bpIKKWNvGgIOL4K&s=ggIUJVNxFcIGLUMDKqG&m=qvIWI6MVLrLbH
To remove yourself from all mailings from NASA Jet Propulsion Laboratory, please go to http://www.kintera.org/TR.asp?a=eiJQK5OHIjLVJeJ&s=ggIUJVNxFcIGLUMDKqG&m=qvIWI6MVLrLbH
No comments:
Post a Comment