MY SEARCH ENGINE

Wednesday, January 28, 2009

Astronomers Observe Planet With Wild Temperature Swings

MEDIA RELATIONS OFFICE
JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
PASADENA, CALIFORNIA 91109. TELEPHONE 818-354-5011
http://www.jpl.nasa.gov

D.C. Agle/Whitney Clavin 818-393-9011/354-4673
Jet Propulsion Laboratory
agle@jpl.nasa.gov/whitney.clavin@jpl.nasa.gov

NEWS RELEASE: 2009-010 Jan. 28, 2009

Astronomers Observe Planet With Wild Temperature Swings

PASADENA, Calif. -- NASA's Spitzer Space Telescope has observed a planet that heats up to
red-hot temperatures in a matter of hours before quickly cooling back down.

The "hot-headed" planet is HD 80606b, a gas giant that orbits a star 190 light-years from Earth.
It was already known to be quite unusual, with an orbit shuttling it nearly as far out as Earth is
from our sun, and much closer in than our planet Mercury. Astronomers used Spitzer, an infrared
observatory, to measure heat emanating from the planet as it whipped behind and close to its star.
In just six hours, the planet's temperature rose from 800 to 1,500 Kelvin (980 to 2,240 degrees
Fahrenheit).

"We watched the development of one of the fiercest storms in the galaxy," said astronomer Greg
Laughlin of the Lick Observatory, University of California at Santa Cruz. "This is the first time
that we've detected weather changes in real time on a planet outside our solar system." Laughlin
is lead author of a new report about the discovery appearing in the Jan. 29 issue of Nature.

HD 80606b was originally discovered in 2001 by a Swiss planet-hunting team led by Dominique
Naef of the Geneva Observatory in Switzerland. Using a method known as the Doppler-velocity
technique, the astronomers learned that the planet is wildly eccentric, with an orbit more like a
comet's than a planet's. HD 80606b's orbit takes it as far out as 0.85 astronomical units from its
star, and as close in as 0.03 astronomical units (one astronomical unit is the distance between
Earth and the sun).

The planet takes about 111 days to circle its star, but it spends most of its time at farther
distances while zipping through the closest part of its orbit in less than a day. (This is a
consequence of Kepler's Second Law of Planetary Motion, which states that orbiting bodies --
planets and comets -- sweep out an equal area in equal time.)

"If you could float above the clouds of this planet, you'd see its sun growing larger and larger at
faster and faster rates, increasing in brightness by almost a factor of 1,000," said Laughlin.

Spitzer observed HD 80606b before, during and just after its closest passage to the star in
November of 2007, as the planet sizzled under the star's heat. When Laughlin and his colleagues
planned the observation, they did not know whether the planet would disappear completely
behind the star, an event called a secondary eclipse, or whether it would remain in view. Luckily
for the team, the planet did indeed temporarily disappear from view, providing the planet's initial
and final temperatures (had the planet had not been eclipsed, the team would have known only
the temperature change without knowing the starting point).

The extreme temperature swing observed by Spitzer indicates that the air near the planet's
gaseous surface must quickly absorb and lose heat. This type of atmospheric information
revealing how a planet responds to sudden changes in heating -- an extreme version of seasonal
change -- had never been obtained before for any exoplanet (a planet orbiting another star).

"By studying this planet under such extreme circumstances, we figure out how it handles heat --
does it retain it or dissipate it? In this case, the answer is that the planet releases the heat right
away," said Laughlin. "We were essentially able to perform the 'thought experiment' -- what
would happen to a planet like Jupiter if we could drag it very close to the sun?"

Laughlin and his colleagues say that a key factor in being able to make the observations is the
planet's eccentric orbit. Unlike so-called hot Jupiter planets that remain in tight orbits around their
stars, HD 80606b rotates around its axis roughly every 34 hours. Hot Jupiters, on the other hand,
are thought to be tidally locked like our moon, so one side always faces their stars. Because HD
80606b spins on its axis many times per orbit, the astronomers were able to measure how its
atmosphere responds to being baked by the star.

"The planet is spinning at a fast enough rate for the planet's hot spot to come into view," said co-
author Drake Deming of NASA's Goddard Space Flight Center, Greenbelt, Md. "The hot spot
can't hide."

Amateur and professional astronomers alike are gearing up to observe HD 80606b this coming
Valentine's Day, when it will swing around the front of its star. There's a 15 percent chance that
the planet will eclipse its star, an event known as the primary transit. If so, the event would not
only be remarkable to see, but would also provide more details about the nature of this
temperamental world.

Other authors include Jonathan Langton, Daniel Kasen, Steve Vogt, Eugenio Rivera and Stefano
Meschiari from the University of California, Santa Cruz, and Paul Butler of the Carnegie
Institution's Department of Terrestrial Magnetism, Washington. NASA's Jet Propulsion
Laboratory, Pasadena, Calif., manages the Spitzer Space Telescope mission for NASA's Science
Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center
at the California Institute of Technology, also in Pasadena. Caltech manages JPL for NASA.

More information about Spitzer is at http://www.spitzer.caltech.edu/spitzer. More information
about extrasolar planets is at http://planetquest.jpl.nasa.gov .

-end-

To remove yourself from this mailing, please go to http://www.kintera.org/TR.asp?a=bdJIKNNmEgKRK3L&s=iiKYL1MFIeLKL0OLIsF&m=kgLTIVMBImJ0F

To remove yourself from all mailings from NASA Jet Propulsion Laboratory, please go to http://www.kintera.org/TR.asp?a=jvKYKbPTJgIPLiK&s=iiKYL1MFIeLKL0OLIsF&m=kgLTIVMBImJ0F

No comments: