MY SEARCH ENGINE

Sunday, May 25, 2008

NASA'S Phoenix Spacecraft Lands at Martian Arctic Site

MEDIA RELATIONS OFFICE
JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
PASADENA, CALIF. 91109 TELEPHONE 818-354-5011
http://www.jpl.nasa.gov


Guy Webster 818-354-5011
Jet Propulsion Laboratory, Pasadena, Calif.
guy.webster@jpl.nasa.gov

Dwayne Brown 202-358-1726
NASA Headquarters, Washington
dwayne.c.brown@nasa.gov

Sara Hammond 520-626-1974
University of Arizona, Tucson
shammond@lpl.arizona.edu

NEWS RELEASE: 2008-081 May 25, 2008

NASA'S Phoenix Spacecraft Lands at Martian Arctic Site

PASADENA, Calif. -- NASA's Phoenix spacecraft landed in the northern polar region of Mars today
to begin three months of examining a site chosen for its likelihood of having frozen water within
reach of the lander's robotic arm.

Radio signals received at 4:53:44 p.m. Pacific Time (7:53:44 p.m. Eastern Time) confirmed the
Phoenix Mars Lander had survived its difficult final descent and touchdown 15 minutes earlier. The
signals took that long to travel from Mars to Earth at the speed of light.

Mission team members at NASA's Jet Propulsion Laboratory, Pasadena, Calif.; Lockheed Martin
Space Systems, Denver; and the University of Arizona, Tucson, cheered confirmation of the landing
and eagerly awaited further information from Phoenix later tonight.

Among those in the JPL control room was NASA Administrator Michael Griffin, who noted this was
the first successful Mars landing without airbags since Viking 2 in 1976.

"For the first time in 32 years, and only the third time in history, a JPL team has carried out a soft
landing on Mars," Griffin said. "I couldn't be happier to be here to witness this incredible
achievement."

During its 422-million-mile flight from Earth to Mars after launching on Aug. 4, 2007, Phoenix relied
on electricity from solar panels during the spacecraft's cruise stage. The cruise stage was jettisoned
seven minutes before the lander, encased in a protective shell, entered the Martian atmosphere.
Batteries provide electricity until the lander's own pair of solar arrays spread open.

"We've passed the hardest part and we're breathing again, but we still need to see that Phoenix has
opened its solar arrays and begun generating power," said JPL's Barry Goldstein, the Phoenix project
manager. If all goes well, engineers will learn the status of the solar arrays between 7 and 7:30 p.m.
Pacific Time (10 and 10:30 p.m. Eastern Time) from a Phoenix transmission relayed via NASA's
Mars Odyssey orbiter.

The team will also be watching for the Sunday night transmission to confirm that masts for the stereo
camera and the weather station have swung to their vertical positions.

"What a thrilling landing! But the team is waiting impatiently for the next set of signals that will
verify a healthy spacecraft," said Peter Smith of the University of Arizona, principal investigator for
the Phoenix mission. "I can hardly contain my enthusiasm. The first landed images of the Martian
polar terrain will set the stage for our mission."

Another critical deployment will be the first use of the 7.7-foot-long robotic arm on Phoenix, which
will not be attempted for at least two days. Researchers will use the arm during future weeks to get
samples of soil and ice into laboratory instruments on the lander deck.

The signal confirming that Phoenix had survived touchdown was relayed via Mars Odyssey and
received on Earth at the Goldstone, Calif., antenna station of NASA's Deep Space Network.

Phoenix uses hardware from a spacecraft built for a 2001 launch that was canceled in response to the
loss of a similar Mars spacecraft during a 1999 landing attempt. Researchers who proposed the
Phoenix mission in 2002 saw the unused spacecraft as a resource for pursuing a new science
opportunity. Earlier in 2002, Mars Odyssey discovered that plentiful water ice lies just beneath the
surface throughout much of high-latitude Mars. NASA chose the Phoenix proposal over 24 other
proposals to become the first endeavor in the Mars Scout program of competitively selected missions.

The Phoenix mission is led by Smith at the University of Arizona with project management at JPL
and development partnership at Lockheed Martin, Denver. International contributions come from the
Canadian Space Agency; the University of Neuchatel, Switzerland; the universities of Copenhagen
and Aarhus, Denmark; Max Planck Institute, Germany; and the Finnish Meteorological Institute. For
more about Phoenix, visit http://www.nasa.gov/phoenix .

- end -


To remove yourself from all mailings from NASA Jet Propulsion Laboratory, please go to http://www.kintera.org/TR.asp?a=ijK0JdPOLkIZLjK&s=eeJQJPOpHaLCLOPvEoG&m=ntKZI5NNLoJ7F

No comments: