MY SEARCH ENGINE

Friday, February 15, 2008

Mars Rovers Sharpen Questions About Livable Conditions

MEDIA RELATIONS OFFICE
JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
PASADENA, CALIFORNIA 91109. TELEPHONE 818-354-5011
http://www.jpl.nasa.gov

Guy Webster 818-354-6278
Jet Propulsion Laboratory, Pasadena, Calif.
guy.webster@jpl.nasa.gov

NEWS RELEASE: 2008-026 Feb. 15, 2008

Mars Rovers Sharpen Questions About Livable Conditions

BOSTON -- Like salt used as a preservative, high concentrations of dissolved minerals in
the wet, early-Mars environment known from discoveries by NASA's Opportunity rover
may have thwarted any microbes from developing or surviving.

"Not all water is fit to drink," said Andrew Knoll, a member of the rover science team
who is a biologist at Harvard University, Cambridge, Mass.

Opportunity and its twin, Spirit, began their fifth year on Mars last month, far surpassing
their prime missions of three months. Today, at a meeting of the American Association
for the Advancement of Science in Boston, scientists and engineers discussed new
observations by the rovers, recent analysis of some earlier discoveries, and perspectives
on which lessons from these rovers' successes apply to upcoming missions to Mars.

"The engineering efforts that have enabled the rovers' longevity have tremendously
magnified the science return," said Steve Squyres of Cornell University, Ithaca, N.Y.,
principal investigator for the rovers' science payload. "All of Spirit's most important
findings, such as evidence for hot springs or steam vents, came after the prime mission."

Opportunity spent recent months examining a bright band of rocks around the inner wall
of a crater. Scientists previously hypothesized this material might preserve a record of the
ground surface from just before the impact that excavated the crater. Inspection suggests
that, instead, it was at the top of an underground water table, Squyres reported.

Experiments with simulated Martian conditions and computer modeling are helping
researchers refine earlier assessments of whether the long-ago conditions in the Meridiani
area studied by Opportunity would have been hospitable to microbes. Chances look
slimmer. "At first, we focused on acidity, because the environment would have been very
acidic," Knoll said. "Now, we also appreciate the high salinity of the water when it left
behind the minerals Opportunity found. This tightens the noose on the possibility of life."

Conditions may have been more hospitable earlier, with water less briny, but later
conditions at Meridiani and elsewhere on the surface of Mars appear to have been less
hospitable, Knoll said. "Life at the Martian surface would have been very challenging for
the last 4 billion years. The best hopes for a story of life on Mars are at environments we
haven't studied yet -- older ones, subsurface ones," he said.

NASA's current rovers and orbiters at Mars pursue the agency's "follow the water" theme
for Mars exploration. They decipher the roles and fate of water on a planet whose most
striking difference from Earth is a scarcity of water. "Our next missions, Phoenix and
Mars Science Laboratory, mark a transition from water to habitability -- assessing
whether sites where there's been water have had conditions suited to life," said Charles
Elachi, director of NASA's Jet Propulsion Laboratory, Pasadena, Calif. "Where
conditions were habitable, later missions may look for evidence of life."

Elachi cited the achievements of Spirit and Opportunity. "They have worked 16 times
longer than planned, driven 20 times farther than planned, and, most important, found
diverse geological records of the effects of water in ancient Martian environments," he
said. "We must not let these successes lull us into thinking this type of exploration is
easy. Fifty years into the Space Age, we are still in the golden age of robotic exploration
of our solar system, when each mission is unprecedented in some way as we push the
limits of what is possible. Each mission presents new challenges."

The Phoenix lander, on course to reach Mars on May 25, will assess habitability of a
shallow subsurface environment of icy soil farther north than any earlier mission has
landed. It revives technology from missions launched before Spirit and Opportunity. The
following mission, the Mars Science Laboratory rover, will incorporate many lessons
from the current rovers, said that project's manager, Richard Cook of JPL. "The next
rover will be much bigger to carry the instruments necessary for meeting its goals, but it
would be laughable to consider doing Mars Science Laboratory without the experience
gained from doing the Mars Exploration Rovers," he said.

The Mars Science Laboratory rover will weigh about four times as much as Spirit or
Opportunity. "There's no way we could use an airbag landing," said JPL's Rob Manning,
chief engineer for the future rover. Instead, a rocket-powered hovering stage will lower it
to the surface on a tether. Lessons from Spirit and Opportunity will come into play when
it starts driving, though. "With the current rovers, we've learned we can trust the
autonomous navigation technology to a level we never expected, so now we can include
that as a capability in our mission design for Mars Science Laboratory," Manning said.

JPL, a division of the California Institute of Technology, Pasadena, built and manages the
rovers for NASA's Science Mission Directorate. For images and information about Spirit
and Opportunity, visit http://www.nasa.gov/rovers and http://marsrovers.jpl.nasa.gov

.

-end-


To remove yourself from all mailings from NASA Jet Propulsion Laboratory, please go to http://www.kintera.org/TR.asp?a=aoLNLTNlH6LGJ0J&s=mwI6KdMVJiJSLcO1JwH&m=jsJSIYNFIjL3G

No comments: