MY SEARCH ENGINE

Friday, July 29, 2016

JPL News - Day in Review

 

DAY IN REVIEW
Mars Gullies Likely Not Formed by Liquid Water
New findings using data from NASA's Mars Reconnaissance Orbiter show that gullies on modern Mars are likely not being formed by flowing liquid water.
› Read the full story
Five Years Post-Launch, Juno Is at a Turning Point
Five years after departing Earth, and a month after slipping into orbit around Jupiter, NASA's Juno spacecraft is nearing a turning point.
› Read the full story

 


This message was sent to chantybanty1.chanti@blogger.com from:

NASA Jet Propulsion Laboratory | jplnewsroom@jpl.nasa.gov | NASA's Jet Propulsion Laboratory | 4800 Oak Grove Dr | Pasadena, CA 91109

Thursday, July 28, 2016

JPL News - Day in Review

 

DAY IN REVIEW
NASA JPL latest news release
Chorus of Black Holes Sings in X-Rays

Supermassive black holes in the universe are like a raucous choir singing in the language of X-rays. When black holes pull in surrounding matter, they let out powerful X-ray bursts. This song of X-rays, coming from a chorus of millions of black holes, fills the entire sky -- a phenomenon astronomers call the cosmic X-ray background.

NASA's Chandra mission has managed to pinpoint many of the so-called active black holes contributing to this X-ray background, but the ones that let out high-energy X-rays -- those with the highest-pitched "voices" -- have remained elusive.

New data from NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, have, for the first time, begun to pinpoint large numbers of the black holes belting out the high-energy X-rays. Or, in astronomer-speak, NuSTAR has made significant progress in resolving the high-energy X-ray background.

"We've gone from resolving just two percent of the high-energy X-ray background to 35 percent," said Fiona Harrison, the principal investigator of NuSTAR at Caltech in Pasadena and lead author of a new study describing the findings in an upcoming issue of The Astrophysical Journal. "We can see the most obscured black holes, hidden in thick gas and dust."

The results will ultimately help astronomers understand how the feeding patterns of supermassive black holes change over time. This is a key factor in the growth of not only black holes, but also the galaxies that host them. The supermassive black hole at the center of our Milky Way galaxy is dormant now, but at some point in the past, it too would have siphoned gas and bulked up in size.

As black holes grow, their intense gravity pulls matter toward them. The matter heats up to scorching temperatures, and particles get boosted to close to the speed of light. Together, these processes make the black hole surroundings glow with X-rays. A supermassive black hole with a copious supply of fuel, or gas, will give off more high-energy X-rays.

NuSTAR is the first telescope capable of focusing these high-energy X-rays into sharp pictures.

"Before NuSTAR, the X-ray background in high energies was just one blur with no resolved sources," said Harrison. "To untangle what's going on, you have to pinpoint and count up the individual sources of the X-rays."

"We knew this cosmic choir had a strong high-pitched component, but we still don't know if it comes from a lot of smaller, quiet singers, or a few with loud voices," said co-author Daniel Stern, the project scientist for NuSTAR at NASA's Jet Propulsion Laboratory in Pasadena, California. "Now, thanks to NuSTAR, we're gaining a better understanding of the black holes and starting to address these questions."

High-energy X-rays can reveal what lies around the most buried supermassive black holes, which are otherwise hard to see. In the same way that medical X-rays can travel through your skin to reveal pictures of bones, NuSTAR can see through the gas and dust around black holes, to get a deeper view of what's going on inside.

With NuSTAR's more complete picture of the supermassive black hole populations, astronomers can begin to puzzle together how they evolve and change over time. When did they start and stop feeding? What is the distribution of the gas and dust that both feed and hide the black holes?

The team expects to resolve more of the high-energy X-ray background over time with NuSTAR -- and better decipher the X-ray voices of our universe's rowdiest choir.

NuSTAR is a Small Explorer mission led by Caltech and managed by JPL for NASA's Science Mission Directorate in Washington. NuSTAR was developed in partnership with the Danish Technical University and the Italian Space Agency (ASI). The spacecraft was built by Orbital Sciences Corp., Dulles, Virginia. NuSTAR's mission operations center is at UC Berkeley, and the official data archive is at NASA's High Energy Astrophysics Science Archive Research Center. ASI provides the mission's ground station and a mirror archive. JPL is managed by Caltech for NASA.

For more information, visit:

http://www.nasa.gov/nustar

http://www.nustar.caltech.edu/

 


This message was sent to chantybanty1.chanti@blogger.com from:

NASA Jet Propulsion Laboratory | jplnewsroom@jpl.nasa.gov | NASA's Jet Propulsion Laboratory | 4800 Oak Grove Dr | Pasadena, CA 91109

Wednesday, July 27, 2016

JPL News - Day in Review

 

DAY IN REVIEW
NASA JPL latest news release
Loneliest Young Star Seen by Spitzer and WISE

Alone on the cosmic road, far from any known celestial object, a young, independent star is going through a tremendous growth spurt.

The unusual object, called CX330, was first detected as a source of X-ray light in 2009 by NASA's Chandra X-Ray Observatory while it was surveying the bulge in the central region of the Milky Way. Further observations indicated that this object was emitting optical light as well. With only these clues, scientists had no idea what this object was.

But when Chris Britt, postdoctoral researcher at Texas Tech University in Lubbock, and colleagues were examining infrared images of the same area taken with NASA's Wide-field Infrared Survey Explorer (WISE), they realized this object has a lot of warm dust around it, which must have been heated by an outburst.

Comparing WISE data from 2010 with Spitzer Space Telescope data from 2007, researchers determined that CX330 is likely a young star that had been outbursting for several years. In fact, in that three-year period its brightness had increased by a few hundred times.

Astronomers looked at data about the object from a variety of other observatories, including the ground-based SOAR, Magellan, and Gemini telescopes. They also used the large telescope surveys VVV and the OGLE-IV to measure the intensity of light emitted from CX330. By combining all of these different perspectives on the object, a clearer picture emerged.

"We tried various interpretations for it, and the only one that makes sense is that this rapidly growing young star is forming in the middle of nowhere," said Britt, lead author of a study on CX330 recently published in the Monthly Notices of the Royal Astronomical Society.

The lone star's behavior has similarities to FU Orionis, a young outbursting star that had an initial three-month outburst in 1936-7. But CX330 is more compact, hotter and likely more massive than the FU Orionis-like objects known. The more isolated star launches faster "jets," or outflows of material that slam into the gas and dust around it.

"The disk has probably heated to the point where the gas in the disk has become ionized, leading to a rapid increase in how fast the material falls onto the star," said Thomas Maccarone, study co-author and associate professor at Texas Tech.

Most puzzling to astronomers, FU Orionis and the rare objects like it -- there are only about 10 of them -- are located in star-forming regions. Young stars usually form and feed from their surrounding gas and dust-rich regions in star-forming clouds. By contrast, the region of star formation closest to CX330 is over a thousand light-years away.

"CX330 is both more intense and more isolated than any of these young outbursting objects that we've ever seen," said Joel Green, study co-author and researcher at the Space Telescope Science Institute in Baltimore. "This could be the tip of the iceberg -- these objects may be everywhere."

In fact, it is possible that all stars go through this dramatic stage of development in their youth, but that the outbursts are too short in cosmological time for humans to observe many of them.

How did CX330 become so isolated? One idea is that it may have been born in a star-forming region, but was ejected into its present lonely pocket of the galaxy. But this is unlikely, astronomers say. Because CX330 is in a youthful phase of its development -- likely less than 1 million years old -- and is still eating its surrounding disk, it must have formed near its present location in the sky.

"If it had migrated from a star-forming region, it couldn't get there in its lifetime without stripping its disk away entirely," Britt said.

CX330 may also help scientists study the way stars form under different circumstances. One scenario is that stars form through turbulence. In this "hierarchical" model, a critical density of gas in a cloud causes the cloud to gravitationally collapse into a star. A different model, called "competitive accretion," suggests that stars begin as low-mass cores that fight over the mass of material left in the cloud. CX330 more naturally fits into the first scenario, as the turbulent circumstances would theoretically allow for a lone star to form.

It is still possible that other intermediate- to low-mass stars are in the immediate vicinity of CX330, but have not been detected yet.

When CX330 was last viewed in August 2015, it was still outbursting. Astronomers plan to continue studying the object, including with future telescopes that could view it in other wavelengths of light.

Outbursts from a young star change the chemistry of the star's disk, from which planets may eventually form. If the phenomenon is common, that means that planets, including our own, may carry the chemical signatures of an ancient disk of gas and dust scarred by stellar outbursts.

But as CX330 is continuing to devour its disk with increasing voracity, astronomers do not expect that planets are forming in its system.

"If it's truly a massive star, its lifetime is short and violent, and I wouldn't recommend being a planet around it," Green said. "You could experience some pretty intense heat for a few centuries."

For more information on WISE, visit:

http://www.nasa.gov/wise

For more information on Spitzer, visit:

http://www.nasa.gov/spitzer

 


This message was sent to chantybanty1.chanti@blogger.com from:

NASA Jet Propulsion Laboratory | jplnewsroom@jpl.nasa.gov | NASA's Jet Propulsion Laboratory | 4800 Oak Grove Dr | Pasadena, CA 91109

Thursday, July 21, 2016

JPL News - Day in Review

 

DAY IN REVIEW
Historical Records Miss a Fifth of Global Warming: NASA
A new NASA-led study finds that almost one-fifth of the global warming that has occurred in the past 150 years has been missed by historical records due to quirks in how global temperatures were recorded.
› Read the full story
NASA Mars Rover Can Choose Laser Targets on Its Own
NASA's Mars rover Curiosity is using onboard software to select rocks to zap with its laser spectrometer and to autonomously point the instrument at the targets.
› Read the full story

 


This message was sent to chantybanty1.chanti@blogger.com from:

NASA Jet Propulsion Laboratory | jplnewsroom@jpl.nasa.gov | NASA's Jet Propulsion Laboratory | 4800 Oak Grove Dr | Pasadena, CA 91109

Tuesday, July 19, 2016

JPL News - Day in Review

 

DAY IN REVIEW
NASA JPL latest news release
X Marks the Spot for Milky Way Formation

A new understanding of our galaxy's structure began in an unlikely way: on Twitter. A research effort sparked by tweets led scientists to confirm that the Milky Way's central bulge of stars forms an "X" shape. The newly published study uses data from NASA's Wide-field Infrared Survey Explorer (WISE) mission.

The unconventional collaboration started in May 2015 when Dustin Lang, an astronomer at the Dunlap Institute of the University of Toronto, posted galaxy maps to Twitter, using data from WISE's two infrared surveys of the entire sky in 2010. Infrared light allows astronomers to see the structures of galaxies in spite of dust, which blocks crucial details in visible light. Lang was using the WISE data in a project to map the web of galaxies far outside our Milky Way, which he made available through an interactive website.

But it was the Milky Way's appearance in the tweets that got the attention of other astronomers. Some chimed in about the appearance of the bulge, a football-shaped central structure that is three-dimensional compared to the galaxy's flat disk. Within the bulge, the WISE data seemed to show a surprising X structure, which had never been as clearly demonstrated before in the Milky Way. Melissa Ness, a postdoctoral researcher at the Max Planck Institute for Astronomy in Heidelberg, Germany, recognized the significance of the X shape, and contacted Lang.

The two met a few weeks later at a conference in Michigan, and decided to collaborate on analyzing the bulge using Lang's WISE maps. Their work resulted in a new study published in the Astronomical Journal confirming an X-shaped distribution of stars in the bulge.

"The bulge is a key signature of formation of the Milky Way," said Ness, the study's lead author. "If we understand the bulge we will understand the key processes that have formed and shaped our galaxy."

The Milky Way is an example of a disk galaxy -- a collection of stars and gas in a rotating disk. In these kinds of galaxies, when the thin disk of gas and stars is sufficiently massive, a "stellar bar" may form, consisting of stars moving in a box-shaped orbit around the center. Our own Milky Way has a bar, as do nearly two-thirds of all nearby disk galaxies.

Over time, the bar may become unstable and buckle in the center. The resulting "bulge" would contain stars that move around the galactic center, perpendicular to the plane of the galaxy, and in and out radially. When viewed from the side, the stars would appear distributed in a box-like or peanut-like shape as they orbit. Within that structure, according to the new study, there is a giant X-shaped structure of stars crossing at the center of the galaxy.

A bulge can also form when galaxies merge, but the Milky Way has not merged with any large galaxy in at least 9 billion years.

"We see the boxy shape, and the X within it, clearly in the WISE image, which demonstrates that internal formation processes have driven the bulge formation," Ness said. "This also reinforces the idea that our galaxy has led a fairly quiet life, without major merging events since the bulge was formed, as this shape would have been disrupted if we had any major interactions with other galaxies."

The Milky Way's X-shaped bulge had been reported in previous studies. Images from the NASA Cosmic Background Explorer (COBE) satellite's Diffuse Infrared Background Experiment suggested a boxy structure for the bulge. In 2013, scientists at the Max Planck Institute for Extraterrestrial Physics published 3-D maps of the Milky Way that also included an X-shaped bulge, but these studies did not show an actual image of the X shape. Ness and Lang's study uses infrared data to show the clearest indication yet of the X shape.

Additional research is ongoing to analyze the dynamics and properties of the stars in the Milky Way's bulge.

Collaborating on this study was unusual for Lang -- his expertise is in using computer science to understand large-scale astronomical phenomena, not the dynamics and structure of the Milky Way. But he was able to enter a new field of research because he posted maps to social media and used openly accessible WISE data.

"To me, this study is an example of the interesting, serendipitous science that can come from large data sets that are publicly available," he said. "I'm very pleased to see my WISE sky maps being used to answer questions that I didn't even know existed."

NASA's Jet Propulsion Laboratory, Pasadena, California, manages and operates WISE for NASA's Science Mission Directorate in Washington. The spacecraft was put into hibernation mode in 2011, after it scanned the entire sky twice, thereby completing its main objectives. In September 2013, WISE was reactivated, renamed NEOWISE and assigned a new mission to assist NASA's efforts to identify potentially hazardous near-Earth objects.

For more information on WISE, visit:

http://www.nasa.gov/wise

 


This message was sent to chantybanty1.chanti@blogger.com from:

NASA Jet Propulsion Laboratory | jplnewsroom@jpl.nasa.gov | NASA's Jet Propulsion Laboratory | 4800 Oak Grove Dr | Pasadena, CA 91109

Monday, July 18, 2016

JPL News - Day in Review

 

DAY IN REVIEW
NASA Selects Five Mars Orbiter Concept Studies
NASA has selected five U.S. aerospace companies to conduct concept studies for a potential future Mars orbiter mission.
› Read the full story
NASA's Kepler Confirms 100+ Exoplanets During Its K2 Mission
An international team of astronomers has discovered and confirmed a treasure trove of new worlds using NASA's Kepler spacecraft on its K2 mission.
› Read the full story
NASA Scientists to Discuss 2016 Climate Trends, Impacts
NASA climate experts will discuss recent trends in global temperatures and Arctic sea ice, plus research to better understand their impacts, on a July 19 media telecon.
› Read the full story

 


This message was sent to chantybanty1.chanti@blogger.com from:

NASA Jet Propulsion Laboratory | jplnewsroom@jpl.nasa.gov | NASA's Jet Propulsion Laboratory | 4800 Oak Grove Dr | Pasadena, CA 91109

Friday, July 15, 2016

JPL News - Day in Review

 

DAY IN REVIEW
NASA's Next Mars Rover Progresses Toward 2020 Launch
After an extensive review process, NASA is ready to proceed with final design and construction of its next Mars rover, currently targeted to launch in summer of 2020 and arrive on Mars in February 2021.
› Read the full story
NASA Sails Full-Speed Ahead in Solar System Exploration
With NASA's Juno poised to study Jupiter's origins, NASA continues to explore our solar system to help answer questions about our origins and future and whether we are alone.
› Read the full story

 


This message was sent to chantybanty1.chanti@blogger.com from:

NASA Jet Propulsion Laboratory | jplnewsroom@jpl.nasa.gov | NASA's Jet Propulsion Laboratory | 4800 Oak Grove Dr | Pasadena, CA 91109

Thursday, July 14, 2016

JPL News - Day in Review

 

DAY IN REVIEW
NASA JPL latest news release
NASA to Discuss Next Mars Rover on Facebook Live

NASA will host a Facebook Live event at 10 a.m. PDT (1 p.m. EDT) Friday, July 15, to talk about the science and technology aboard NASA's next Mars rover, Mars 2020, and the significant step the agency is taking on its Journey to Mars, proceeding with final design and construction of the robotic explorer.

During the event, viewers will get a glimpse of the Mars Yard and rock drilling facility at NASA's Jet Propulsion Laboratory in Pasadena, California, and can ask questions during the program via Facebook. Media can submit questions by email at: hq-social@nasa.gov.

Participants will be:

• Kenneth Farley, Mars 2020 project scientist at Caltech in Pasadena
• Matt Robinson, Mars 2020 sampling and caching team deputy manager at JPL
• Allen Chen, Mars 2020 entry, descent and landing lead at JPL

The event can be viewed live on NASA's Facebook page at:

http://www.facebook.com/nasa

The event also will air on NASA Television and stream on the agency's website at:

http://www.nasa.gov/nasatv

http://www.nasa.gov/live

Mars 2020, which has just passed a major development milestone, will look for signs of past life in a region of Mars where the ancient environment is believed to have been favorable for microbial life. It will collect samples of Martian rock and soil that a potential future mission could return to Earth for analysis. It also will assess Mars' geology and modern environment, providing context for other investigations. These studies will address high-priority goals for planetary science and further aid NASA's preparations for a human mission to the Red Planet.

For more information about NASA's Mars missions, visit:

http://www.nasa.gov/journeytomars

 


This message was sent to chantybanty1.chanti@blogger.com from:

NASA Jet Propulsion Laboratory | jplnewsroom@jpl.nasa.gov | NASA's Jet Propulsion Laboratory | 4800 Oak Grove Dr | Pasadena, CA 91109

Tuesday, July 12, 2016

JPL News - Day in Review

 

DAY IN REVIEW
Black Hole Makes Material Wobble Around It
The European Space Agency's orbiting X-ray observatory, XMM-Newton, has proved the existence of a "gravitational vortex" around a black hole.
› Read the full story
NASA's Juno Spacecraft Sends First In-orbit View
The JunoCam camera aboard NASA's Juno mission is operational and sending down data after the spacecraft's July 4 arrival at Jupiter.
› Read the full story

 


This message was sent to chantybanty1.chanti@blogger.com from:

NASA Jet Propulsion Laboratory | jplnewsroom@jpl.nasa.gov | NASA's Jet Propulsion Laboratory | 4800 Oak Grove Dr | Pasadena, CA 91109

Fw:

hi chantybanty1.chanti,

Here's that excel file (latest invoices) that you wanted.


Best regards,
Opal King
Group CEO

Monday, July 11, 2016

JPL News - Day in Review

 

DAY IN REVIEW
NASA JPL latest news release
'Frankenstein' Galaxy Surprises Astronomers

About 250 million light-years away, there's a neighborhood of our universe that astronomers had considered quiet and unremarkable. But now, scientists have uncovered an enormous, bizarre galaxy possibly formed from the parts of other galaxies.

A new study to be published in the Astrophysical Journal reveals the secret of UGC 1382, a galaxy that had originally been thought to be old, small and typical. Instead, scientists using data from NASA telescopes and other observatories have discovered that the galaxy is 10 times bigger than previously thought and, unlike most galaxies, its insides are younger than its outsides, almost as if it had been built using spare parts.

"This rare, 'Frankenstein' galaxy formed and is able to survive because it lies in a quiet little suburban neighborhood of the universe, where none of the hubbub of the more crowded parts can bother it," said study co-author Mark Seibert of the Observatories of the Carnegie Institution for Science, Pasadena, California. "It is so delicate that a slight nudge from a neighbor would cause it to disintegrate."

Seibert and Lea Hagen, a graduate student at Pennsylvania State University, University Park, came upon this galaxy by accident. They had been looking for stars forming in run-of-the-mill elliptical galaxies, which do not spin and are more three-dimensional and football-shaped than flat disks. Astronomers originally thought that UGC 1382 was one of those.

But while looking at images of galaxies in ultraviolet light through data from NASA's Galaxy Evolution Explorer (GALEX), a behemoth began to emerge from the darkness.

"We saw spiral arms extending far outside this galaxy, which no one had noticed before, and which elliptical galaxies should not have," said Hagen, who led the study. "That put us on an expedition to find out what this galaxy is and how it formed."

Researchers then looked at data of the galaxy from other telescopes: the Sloan Digital Sky Survey, the Two Micron All-Sky Survey (2MASS), NASA's Wide-field Infrared Survey Explorer (WISE), the National Radio Astronomy Observatory's Very Large Array and Carnegie's du Pont Telescope at Las Campanas Observatory. After GALEX revealed previously unseen structures to the astronomers, optical and infrared light observations from the other telescopes allowed the researchers to build a new model of this mysterious galaxy.

As it turns out, UGC 1382, at about 718,000 light-years across, is more than seven times wider than the Milky Way. It is also one of the three largest isolated disk galaxies ever discovered, according to the study. This galaxy is a rotating disk of low-density gas. Stars don't form here very quickly because the gas is so spread out.

But the biggest surprise was how the relative ages of the galaxy's components appear backwards. In most galaxies, the innermost portion forms first and contains the oldest stars. As the galaxy grows, its outer, newer regions have the youngest stars. Not so with UGC 1382. By combining observations from many different telescopes, astronomers were able to piece together the historical record of when stars formed in this galaxy -- and the result was bizarre.

"The center of UGC 1382 is actually younger than the spiral disk surrounding it," Seibert said. "It's old on the outside and young on the inside. This is like finding a tree whose inner growth rings are younger than the outer rings."

The unique galactic structure may have resulted from separate entities coming together, rather than a single entity that grew outward. In other words, two parts of the galaxy seem to have evolved independently before merging -- each with its own history.

At first, there was likely a group of small galaxies dominated by gas and dark matter, which is an invisible substance that makes up about 27 percent of all matter and energy in the universe (our own matter is only 5 percent). Later, a lenticular galaxy, a rotating disk without spiral arms, would have formed nearby. At least 3 billion years ago, the smaller galaxies may have fallen into orbit around the lenticular galaxy, eventually settling into the wide disk seen today.

More galaxies like this may exist, but more research is needed to look for them.

"By understanding this galaxy, we can get clues to how galaxies form on a larger scale, and uncover more galactic neighborhood surprises," Hagen said.

The GALEX mission, which ended in 2013 after more than a decade of scanning the skies in ultraviolet light, was led by scientists at Caltech in Pasadena, California. NASA's Jet Propulsion Laboratory, also in Pasadena, managed the mission and built the science instrument. Data for the 2MASS and WISE missions are archived at the Infrared Processing and Analysis Center (IPAC) at Caltech. JPL is managed by Caltech for NASA.

 


This message was sent to chantybanty1.chanti@blogger.com from:

NASA Jet Propulsion Laboratory | jplnewsroom@jpl.nasa.gov | NASA's Jet Propulsion Laboratory | 4800 Oak Grove Dr | Pasadena, CA 91109

Friday, July 8, 2016

JPL News - Day in Review

 

DAY IN REVIEW
Dawn Maps Ceres Craters Where Ice Can Accumulate
Scientists with NASA's Dawn mission have identified permanently shadowed cold regions on the dwarf planet Ceres where ice deposits could exist now.
› Read the full story
Frosty Cold Nights Year-Round on Mars May Stir Dust
Some dusty parts of Mars get as cold at night year-round as the planet's poles do in winter, even regions near the equator in summer, according to new NASA findings based on Mars Reconnaissance Orbiter observations.
› Read the full story

 


This message was sent to chantybanty1.chanti@blogger.com from:

NASA Jet Propulsion Laboratory | jplnewsroom@jpl.nasa.gov | NASA's Jet Propulsion Laboratory | 4800 Oak Grove Dr | Pasadena, CA 91109