MY SEARCH ENGINE

Saturday, January 31, 2015

JPL News - Day in Review

 

DAY IN REVIEW
NASA Launches Groundbreaking Soil Moisture Mapper
NASA successfully launched its first Earth satellite designed to collect global observations of the vital soil moisture hidden just beneath our feet.

Read the full story

 



This message was sent to chantybanty1.chanti@blogger.com from:

NASA Jet Propulsion Laboratory, jplnewsroom@jpl.nasa.gov, NASA's Jet Propulsion Laboratory | 4800 Oak Grove Dr | Pasadena, CA 91109

Manage Your Subscription

Friday, January 30, 2015

JPL News - Day in Review

 

DAY IN REVIEW
Launch of NASA Soil Moisture Mapping Mission Set for Saturday
NASA's Soil Moisture Active Passive mission (SMAP) now is scheduled to launch from Vandenberg Air Force Base, California at 6:20 a.m. PST (9:20 a.m. EST) Saturday, Jan. 31.

Read the full story
Gravitational Waves from Early Universe Remain Elusive
A joint analysis of data from Planck and the ground-based experiment BICEP2 has found no conclusive evidence of gravitational waves from the birth of our universe.

Read the full story

 



This message was sent to chantybanty1.chanti@blogger.com from:

NASA Jet Propulsion Laboratory, jplnewsroom@jpl.nasa.gov, NASA's Jet Propulsion Laboratory | 4800 Oak Grove Dr | Pasadena, CA 91109

Manage Your Subscription

Thursday, January 29, 2015

JPL News - Day in Review

DAY IN REVIEW
NASA TV Coverage Reset for Launch of SMAP Earth Mission

NASA's Soil Moisture Active Passive mission (SMAP) launch from Vandenberg Air Force Base, California, now is scheduled for 6:20 a.m. PST (9:20 a.m. EST) Friday, Jan. 30, with a three-minute launch window. The launch of the United Launch Alliance/Delta II rocket was scrubbed Thursday due to a violation of upper-level wind constraints. Launch managers have initiated a 24-hour recycle. The weather forecast for this launch window shows a 90 percent chance of favorable conditions.

NASA Television coverage of the launch Friday will begin at 4 a.m. PST.

SMAP will provide high-resolution, space-based measurements of soil moisture and its state -- frozen or thawed -- a new capability that will allow scientists to better predict natural hazards of extreme weather, climate change, floods and droughts, and help reduce uncertainties in our understanding of Earth's water, energy and carbon cycles.

The mission will map the entire globe every two to three days for at least three years and provide the most accurate and highest-resolution maps of soil moisture ever obtained. The spacecraft's final circular polar orbit will be 426 miles (685 kilometers), at an inclination of 98.1 degrees. The spacecraft will orbit Earth once every 98.5 minutes and repeat the same ground track every eight days.

For an updated schedule of prelaunch events and NASA TV coverage, visit:

http://go.nasa.gov/1xaYUzD

For in-depth prelaunch, countdown and launch day coverage of the liftoff of SMAP aboard the Delta II rocket, go to:

http://blogs.nasa.gov/smap

For NASA TV schedules and video streaming information, visit:

http://www.nasa.gov/nasatv

For more information about the SMAP mission, visit:

http://www.nasa.gov/smap


 

 



This message was sent to chantybanty1.chanti@blogger.com from:

NASA Jet Propulsion Laboratory, jplnewsroom@jpl.nasa.gov, NASA's Jet Propulsion Laboratory | 4800 Oak Grove Dr | Pasadena, CA 91109

Manage Your Subscription

Wednesday, January 28, 2015

JPL News - Day in Review

DAY IN REVIEW
Cassini Catches Titan Naked in the Solar Wind

Researchers studying data from NASA's Cassini mission have observed that Saturn's largest moon, Titan, behaves much like Venus, Mars or a comet when exposed to the raw power of the solar wind. The observations suggest that unmagnetized bodies like Titan might interact with the solar wind in the same basic ways, regardless of their nature or distance from the sun.

Titan is large enough that it could be considered a planet if it orbited the sun on its own, and a flyby of the giant moon in Dec. 2013 simulated that scenario, from Cassini's vantage point. The encounter was unique within Cassini's mission, as it was the only time the spacecraft has observed Titan in a pristine state, outside the region of space dominated by Saturn's magnetic field, called its magnetosphere.

"We observed that Titan interacts with the solar wind very much like Mars, if you moved it to the distance of Saturn," said Cesar Bertucci of the Institute of Astronomy and Space Physics in Buenos Aires, who led the research with colleagues from the Cassini mission. "We thought Titan in this state would look different. We certainly were surprised," he said.

The solar wind is a fast-flowing gale of charged particles that continually streams outward from the sun, flowing around the planets like islands in a river. Studying the effects of the solar wind at other planets helps scientists understand how the sun's activity affects their atmospheres. These effects can include modification of an atmosphere's chemistry as well as its gradual loss to space.

Titan spends about 95 percent of the time within Saturn's magnetosphere. But during a Cassini flyby on Dec. 1, 2013, the giant moon happened to be on the sunward side of Saturn when a powerful outburst of solar activity reached the planet. The strong surge in the solar wind so compressed the sun-facing side of Saturn's magnetosphere that the bubble's outer edge was pushed inside the orbit of Titan. This left the moon exposed to, and unprotected from, the raging stream of energetic solar particles.

Using its magnetometer instrument, which is akin to an equisitely sensitive compass, Cassini has observed Titan many times during the mission's decade in the Saturn system, but always within Saturn's magnetosphere. The spacecraft has not been able to detect a magnetic field coming from Titan itself. In its usual state, Titan is cloaked in Saturn's magnetic field.

This time the influence of Saturn was not present, allowing Cassini's magnetometer to observe Titan as it interacted directly with the solar wind. The special circumstance allowed Bertucci and colleagues to study the shockwave that formed around Titan where the full-force solar wind rammed into the moon's atmosphere.

At Earth, our planet's powerful magnetic field acts as a shield against the solar wind, helping to protect our atmosphere from being stripped away. In the case of Venus, Mars and comets -- none of which is protected by a global magnetic field -- the solar wind drapes around the objects themselves, interacting directly with their atmospheres (or in the comet's case, its coma). Cassini saw the same thing at Titan.

Researchers thought they would have to treat Titan's response to the solar wind with a unique approach because the chemistry of the hazy moon's dense atmosphere is highly complex. But Cassini's observations of a naked Titan hinted at a more elegant solution. "This could mean we can use the same tools to study how vastly different worlds, in different parts of the solar system, interact with the wind from the sun," Bertucci said.

Bertucci noted that the list of similarly unmagnetized bodies might include the dwarf planet Pluto, to be visited this year for the first time by NASA's New Horizons spacecraft.

"After nearly a decade in orbit, the Cassini mission has revealed once again that the Saturn system is full of surprises," said Michele Dougherty, principal investigator of the Cassini magnetometer at Imperial College, London. "After more than a hundred flybys, we have finally encountered Titan out in the solar wind, which will allow us to better understand how such moons maintain or lose their atmospheres."

The new research is published today in the journal Geophysical Review Letters.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. JPL designed, developed and assembled the Cassini orbiter. The magnetometer team is based at Imperial College, London, U.K.

More information about Cassini:

http://www.nasa.gov/cassini

and

http://saturn.jpl.nasa.gov


 

 



This message was sent to chantybanty1.chanti@blogger.com from:

NASA Jet Propulsion Laboratory, jplnewsroom@jpl.nasa.gov, NASA's Jet Propulsion Laboratory | 4800 Oak Grove Dr | Pasadena, CA 91109

Manage Your Subscription

Tuesday, January 27, 2015

JPL News - Day in Review

 

DAY IN REVIEW
NASA's Dawn Spacecraft Captures Best-Ever View of Dwarf Planet
NASA's Dawn spacecraft has returned the sharpest images ever seen of the dwarf planet Ceres.

Read the full story
Building a Better Weather Forecast? SMAP May Help
Soil moisture data from NASA's SMAP mission will open a path to improved weather forecasts.

Read the full story
Citizen Scientists Lead Astronomers to Mystery Objects in Space
"Hmm, what's that?" Simply by asking the question, volunteers have led researchers to illuminate a little-known stage of massive star formation

Read the full story

 



This message was sent to chantybanty1.chanti@blogger.com from:

NASA Jet Propulsion Laboratory, jplnewsroom@jpl.nasa.gov, NASA's Jet Propulsion Laboratory | 4800 Oak Grove Dr | Pasadena, CA 91109

Manage Your Subscription

Monday, January 26, 2015

JPL News - Day in Review

DAY IN REVIEW
SMAP Will Track a Tiny Cog That Keeps Cycles Spinning

When you open the back of a fine watch, you see layer upon layer of spinning wheels linked by interlocking cogs, screws and wires. Some of the cogs are so tiny they're barely visible. Size doesn't matter -- what's important is that the cogs fit together well so the wheels keep turning smoothly.

For centuries, scientists have thought of the Earth system as a series of cycles or interlocking wheels like the ones in a watch. It's a way to make sense of the movements of water and other essentials back and forth between the air and the land, ocean and soil or rock beneath them. In today's changing climate, some cycles are spinning faster or beginning to wobble. There's an urgent need to understand what is happening to the cogs that keep these cycles turning.

The minuscule fraction of Earth's water lodged just beneath the land surface is a tiny cog that links the water cycle to two other fundamental Earth cycles: energy and carbon. "That linkage is what makes these three gears turn with a certain harmony," said Dara Entekhabi of the Massachusetts Institute of Technology, Cambridge. Entekhabi is science team leader for NASA's Soil Moisture Active Passive mission, scheduled to launch Jan. 29. Developed and managed by NASA's Jet Propulsion Laboratory in Pasadena, California, SMAP will provide the most accurate information ever about this small but critical cog.

You may have learned about the water cycle in school: Water falls from the sky to the land when it rains or snows, and rises from the land back to the sky when it heats up and evaporates. Your teacher may not have mentioned that water vapor isn't the only thing that rises. The heat energy that turned liquid water into vapor also rises, cooling Earth's surface. In fact, evaporating soil moisture is the main way that land sheds the solar energy it receives every day and thus is a major player in the energy cycle. "It's the first process to kick in when the surface heats up, and it continues as long as there is moisture in the soil that can evaporate," Entekhabi said. Evaporation gets rid of nearly half of the solar energy that reaches land, keeping our planet's temperature comfortable.

If there's any moisture at all in soil, there's probably a plant growing there. That's why most evaporation from soil starts with a plant absorbing water through its roots. Plants need water for photosynthesis, their food-creating process. During photosynthesis they "sweat" -- or transpire -- water onto their leaves, where it evaporates.

Besides using water and energy, plants absorb carbon dioxide from the atmosphere during photosynthesis. Over land, this is virtually the only natural way for carbon to be removed from the atmosphere. Soil moisture keeps this vital carbon highway open by enabling plants to continue growing. "If a plant has access to water, it happily carries on with photosynthesis," Entekhabi said. "If not, the plant shuts down, and eventually it wilts and dies."

After SMAP launches, the new data it will provide are expected to help scientists answer some long-standing questions about what is likely to happen to these important Earth cycles in a changing climate. Entekhabi hopes to take advantage of the synergy available between SMAP and NASA's new Orbiting Carbon Observatory-2, which measures global carbon dioxide. "We have talked a lot with the OCO-2 scientists about how we can use simultaneous measurements to solve the puzzle of how plants respond to soil moisture and how the carbon cycle and the water cycle are linked," he said. "If we get that linkage right, we will reduce the uncertainty in future climate projections and know more about how terrestrial plants are going to act in the future."

For more about SMAP, see:

http://smap.jpl.nasa.gov/

http://www.nasa.gov/smap/

SMAP will be the last of five NASA Earth science launches within 12 months. NASA monitors Earth's vital signs from land, air and space with a fleet of satellites and ambitious airborne and ground-based observation campaigns. NASA develops new ways to observe and study Earth's interconnected natural systems with long-term data records and computer analysis tools to better see how our planet is changing. The agency shares this unique knowledge with the global community and works with institutions in the United States and around the world that contribute to understanding and protecting our home planet.

For more information about NASA's Earth science activities, visit:

http://www.nasa.gov/earthrightnow


 

 



This message was sent to chantybanty1.chanti@blogger.com from:

NASA Jet Propulsion Laboratory, jplnewsroom@jpl.nasa.gov, NASA's Jet Propulsion Laboratory | 4800 Oak Grove Dr | Pasadena, CA 91109

Manage Your Subscription

Thursday, January 22, 2015

JPL News - Day in Review

 

DAY IN REVIEW
Hilltop Panorama Marks Mars Rover's 11th Anniversary
A panorama from one of the highest elevations that NASA's Mars Exploration Rover Opportunity has reached in its 11 years on Mars includes the U.S. flag at the summit.

Read the full story
Rosetta Comet 'Pouring' More Water Into Space
There has been a significant increase in the amount of water "pouring" out of the Rosetta mission's comet.

Read the full story

 



This message was sent to chantybanty1.chanti@blogger.com from:

NASA Jet Propulsion Laboratory, jplnewsroom@jpl.nasa.gov, NASA's Jet Propulsion Laboratory | 4800 Oak Grove Dr | Pasadena, CA 91109

Manage Your Subscription

Wednesday, January 21, 2015

JPL News - Day in Review

DAY IN REVIEW
NASA, Microsoft Collaboration Will Allow Scientists to 'Work on Mars'

NASA and Microsoft have teamed up to develop software called OnSight, a new technology that will enable scientists to work virtually on Mars using wearable technology called Microsoft HoloLens.

Developed by NASA's Jet Propulsion Laboratory in Pasadena, California, OnSight will give scientists a means to plan and, along with the Mars Curiosity rover, conduct science operations on the Red Planet.

"OnSight gives our rover scientists the ability to walk around and explore Mars right from their offices," said Dave Lavery, program executive for the Mars Science Laboratory mission at NASA Headquarters in Washington. "It fundamentally changes our perception of Mars, and how we understand the Mars environment surrounding the rover."

OnSight will use real rover data and extend the Curiosity mission's existing planning tools by creating a 3-D simulation of the Martian environment where scientists around the world can meet. Program scientists will be able to examine the rover's worksite from a first-person perspective, plan new activities and preview the results of their work firsthand.

"We believe OnSight will enhance the ways in which we explore Mars and share that journey of exploration with the world," said Jeff Norris, JPL's OnSight project manager.

Until now, rover operations required scientists to examine Mars imagery on a computer screen, and make inferences about what they are seeing. But images, even 3-D stereo views, lack a natural sense of depth that human vision employs to understand spatial relationships.

The OnSight system uses holographic computing to overlay visual information and rover data into the user's field of view. Holographic computing blends a view of the physical world with computer-generated imagery to create a hybrid of real and virtual.

To view this holographic realm, members of the Curiosity mission team don a Microsoft HoloLens device, which surrounds them with images from the rover's Martian field site. They then can stroll around the rocky surface or crouch down to examine rocky outcrops from different angles. The tool provides access to scientists and engineers looking to interact with Mars in a more natural, human way.

"Previously, our Mars explorers have been stuck on one side of a computer screen. This tool gives them the ability to explore the rover's surroundings much as an Earth geologist would do field work here on our planet," said Norris.

The OnSight tool also will be useful for planning rover operations. For example, scientists can program activities for many of the rover's science instruments by looking at a target and using gestures to select menu commands.

The joint effort to develop OnSight with Microsoft grew from an ongoing partnership to investigate advances in human-robot interaction. The JPL team responsible for OnSight specializes in systems to control robots and spacecraft. The tool will assist researchers in better understanding the environment and workspace of robotic spacecraft -- something that can be quite challenging with their traditional suite of tools.

JPL plans to begin testing OnSight in Curiosity mission operations later this year. Future applications may include Mars 2020 rover mission operations, and other applications in support of NASA's journey to Mars.

JPL manages the Mars Science Laboratory Project for NASA's Science Mission Directorate in Washington, and built the project's Curiosity rover.

Learn more about NASA's journey to Mars at:

http://www.nasa.gov/mars


 

 



This message was sent to chantybanty1.chanti@blogger.com from:

NASA Jet Propulsion Laboratory, jplnewsroom@jpl.nasa.gov, NASA's Jet Propulsion Laboratory | 4800 Oak Grove Dr | Pasadena, CA 91109

Manage Your Subscription

Tuesday, January 20, 2015

JPL News - Day in Review

DAY IN REVIEW
Telescope To Seek Dust Where Other Earths May Lie

The NASA-funded Large Binocular Telescope Interferometer, or LBTI, has completed its first study of dust in the "habitable zone" around a star, opening a new door to finding planets like Earth. Dust is a natural byproduct of the planet-formation process, but too much of it can block our view of planets.

The findings will help in the design of future space missions that have the goal of taking pictures of planets similar to Earth, called exo-Earths.

"Kepler told us how common Earth-like planets are," said Phil Hinz, the principal investigator of the LBTI project at the University of Arizona, Tucson, referring to NASA's planet-hunting Kepler mission, which has identified more than 4,000 planetary candidates around stars. "Now we want to find out just how dusty and obscured planetary environments are, and how difficult the planets will be to image."

The new instrument, based at the Large Binocular Telescope Observatory at the top of Mount Graham in southeastern Arizona, will obtain the best infrared images yet of dust permeating a star's habitable zone, the region around the star where water -- an essential ingredient for life as we know it -- could pool on a planet. Earth sits comfortably within our sun's habitable zone, hence its glistening surface of oceans.

Scientists want to take pictures of exo-Earths and break up their light into a rainbow of colors. This color information is displayed in plots, called spectra, which reveal chemical clues about whether a planet could sustain life. But dust -- which comes from colliding asteroids and evaporating comets -- can outshine the feeble light of a planet, making this task difficult.

"Imagine trying to view a firefly buzzing around a lighthouse in Canada from Los Angeles," said Denis Defrère of the University of Arizona, lead author of the new study that appears in the Jan. 14 issue of the Astrophysical Journal. "Now imagine that fog is in the way. The fog is like our stardust. We want to eliminate the stars with fog from our list of targets to study in the future."

A previous NASA project, called the Keck Interferometer, had a similar task of seeking out this dust, finding good news for planet hunters: The stars they observed didn't seem to be all that dusty on average. LBTI is taking the research a step further, more precisely quantifying the amount of dust around stars. It will be 10 times more sensitive than the Keck Interferometer, and is specially designed to target a star's inner region -- its sweet spot, the habitable zone.

The new study reports LBTI's first test observations of stardust, in this case around a mature, sun-like star called eta Corvi known to be unusually dusty. According to the science team, this star is 10,000 times dustier than our own solar system, likely due to a recent impact between planetary bodies in its inner regions. The surplus of dust gives the telescope a good place to practice its dust-detecting skills.

The results showed the telescope works as intended, but also yielded a surprise: The dust was observed to be significantly closer to the star than previously thought, lying between the star and its habitable zone. NASA's Spitzer Space Telescope has previously estimated the dust to be farther out, based on models of the size of the dust grains.

"With LBTI, we can really see where the dust is," said Hinz. "This star is a not a good candidate for direct imaging of planets, but it demonstrates what LBTI is good for: We are figuring out the architecture of planetary systems in a way that has not been done before."

LBTI will begin its official science operations this spring, and will operate for at least three years. One of the project's goals is to find stars 10 times less dusty than our solar system -- the good candidates for planet imaging. These survey results will inform designs and strategies for upcoming exo-Earth imaging missions now in early planning stages. The journey to find worlds ripe for life begins in part by following a trail of dust.

LBTI is funded by NASA Headquarters. It is managed by the agency's Jet Propulsion Laboratory, Pasadena, California, for NASA's Exoplanet Exploration Program office, and operated by the University of Arizona. The Large Binocular Telescope Observatory is operated by an international collaboration among institutions in the United States, Italy and Germany. JPL is a division of the California Institute of Technology in Pasadena.

The Astrophysical Journal paper is online at:

http://iopscience.iop.org/0004-637X/799/1/42/article


 

 



This message was sent to chantybanty1.chanti@blogger.com from:

NASA Jet Propulsion Laboratory, jplnewsroom@jpl.nasa.gov, NASA's Jet Propulsion Laboratory | 4800 Oak Grove Dr | Pasadena, CA 91109

Manage Your Subscription

Monday, January 19, 2015

Dawn Delivers New Image of Ceres

DAY IN REVIEW
Dawn Delivers New Image of Ceres

As NASA's Dawn spacecraft closes in on Ceres, new images show the dwarf planet at 27 pixels across, about three times better than the calibration images taken in early December. These are the first in a series of images that will be taken for navigation purposes during the approach to Ceres.

Over the next several weeks, Dawn will deliver increasingly better and better images of the dwarf planet, leading up to the spacecraft's capture into orbit around Ceres on March 6. The images will continue to improve as the spacecraft spirals closer to the surface during its 16-month study of the dwarf planet.

"We know so much about the solar system and yet so little about dwarf planet Ceres. Now, Dawn is ready to change that," said Marc Rayman, Dawn's chief engineer and mission director, based at NASA's Jet Propulsion Laboratory in Pasadena, California.

The best images of Ceres so far were taken by NASA's Hubble Space Telescope in 2003 and 2004. This most recent images from Dawn, taken January 13, 2015, at about 80 percent of Hubble resolution, are not quite as sharp. But Dawn's images will surpass Hubble's resolution at the next imaging opportunity, which will be at the end of January.

"Already, the [latest] images hint at first surface structures such as craters," said Andreas Nathues, lead investigator for the framing camera team at the Max Planck Institute for Solar System Research, Gottingen, Germany.

Ceres is the largest body in the main asteroid belt, which lies between Mars and Jupiter. It has an average diameter of 590 miles (950 kilometers), and is thought to contain a large amount of ice. Some scientists think it's possible that the surface conceals an ocean.

Dawn's arrival at Ceres will mark the first time a spacecraft has ever visited a dwarf planet.

"The team is very excited to examine the surface of Ceres in never-before-seen detail," said Chris Russell, principal investigator for the Dawn mission, based at the University of California, Los Angeles. "We look forward to the surprises this mysterious world may bring."

The spacecraft has already delivered more than 30,000 images and many insights about Vesta, the second most massive body in the asteroid belt. Dawn orbited Vesta, which has an average diameter of 326 miles (525 kilometers), from 2011 to 2012. Thanks to its ion propulsion system, Dawn is the first spacecraft ever targeted to orbit two deep-space destinations.

JPL manages the Dawn mission for NASA's Science Mission Directorate in Washington. Dawn is a project of the directorate's Discovery Program, managed by NASA's Marshall Space Flight Center in Huntsville, Alabama. The University of California at Los Angeles (UCLA) is responsible for overall Dawn mission science. Orbital Sciences Corp. in Dulles, Virginia, designed and built the spacecraft. UCLA is responsible for overall Dawn mission science. The Dawn framing cameras were developed and built under the leadership of the Max Planck Institute for Solar System Research, Gottingen, Germany, with significant contributions by German Aerospace Center (DLR), Institute of Planetary Research, Berlin, and in coordination with the Institute of Computer and Communication Network Engineering, Braunschweig. The Framing Camera project is funded by the Max Planck Society, DLR, and NASA/JPL. The Italian Space Agency and the Italian National Astrophysical Institute are international partners on the mission team.

More information about Dawn is online at http://dawn.jpl.nasa.gov.


 

 



This message was sent to chantybanty1.chanti@blogger.com from:

NASA Jet Propulsion Laboratory, jplnewsroom@jpl.nasa.gov, NASA's Jet Propulsion Laboratory | 4800 Oak Grove Dr | Pasadena, CA 91109

Manage Your Subscription

Friday, January 16, 2015

JPL News - Day in Review

 

DAY IN REVIEW
'Lost' 2003 Mars Lander Found by Mars Reconnaissance Orbiter
The Beagle 2 Mars Lander, built by the United Kingdom, has been thought lost on Mars since 2003, but has now been found in images from NASA's Mars Reconnaissance Orbiter.

Read the full story
NASA SMAP Observatory Ready for Launch
The launch of NASA's Soil Moisture Active Passive (SMAP) mission at Vandenberg Air Force Base (VAFB) in California is scheduled for Thursday, Jan. 29.

Read the full story

 



This message was sent to chantybanty1.chanti@blogger.com from:

NASA Jet Propulsion Laboratory, jplnewsroom@jpl.nasa.gov, NASA's Jet Propulsion Laboratory | 4800 Oak Grove Dr | Pasadena, CA 91109

Manage Your Subscription

Wednesday, January 14, 2015

JPL News - Day in Review

DAY IN REVIEW
NASA and ESA Celebrate 10 Years Since Titan Landing

Ten years ago, an explorer from Earth parachuted into the haze of an alien moon toward an uncertain fate. After a gentle descent lasting more than two hours, it landed with a thud on a frigid floodplain, surrounded by icy cobblestones. With this feat, the Huygens probe accomplished humanity's first landing on a moon in the outer solar system. Huygens was safely on Titan, the largest moon of Saturn.

The hardy probe not only survived the descent and landing, but continued to transmit data for more than an hour on the frigid surface of Titan, until its batteries were drained.

Since that historic moment, scientists from around the world have pored over volumes of data about Titan, sent to Earth by Huygens -- a project of the European Space Agency -- and its mothership, NASA's Cassini spacecraft. In the past 10 years, data from the dynamic spacecraft duo have revealed many details of a surprisingly Earth-like world.

In addition to the technical wizardry needed to pull off this tour de force, international partnerships were critical to successfully delivering the two spacecraft to Saturn and Titan.

"A mission of this ambitious scale represents a triumph in international collaboration," said Earl Maize, Cassini Project manager at NASA's Jet Propulsion Laboratory in Pasadena, California.

"From the mission's formal beginning in 1982, to Huygens' spectacular landing 23 years later, to the present day, Cassini-Huygens owes much of its success to the tremendous synergy and cooperation between more than a dozen countries. This teamwork is still a major strength of the project as the Cassini orbiter continues to explore the Saturn system," Maize said.

A gallery of some of the best images related to Huygens is available at:

http://saturn.jpl.nasa.gov/news/cassinifeatures/huygens10

A collection of Huygens' top findings is available from the European Space Agency at:

http://sci.esa.int/huygens-titan-science-highlights

Cassini's mission is slated to continue through September 2017.

______________________________________________________________________

Science Summary: 10 Years of Unveiling Titan

A decade ago, Titan was known as a hidden, hazy world. Findings made by NASA's Cassini mission and the European Space Agency's Huygens probe have unveiled Titan as an "alien Earth," providing scientists with a unique world to explore.

A sampling of the top discoveries at Titan includes:

Lakes and Seas

Titan is a world with lakes and seas, made up of liquid methane and ethane. It is believed that these bodies of hydrocarbons are replenished by methane and ethane rainfall from clouds in the moon's atmosphere. Titan is the only other place in the solar system known to have an Earth-like cycle of liquids flowing across its surface.

Active Meteorology and Surface Processes

Liquid methane drizzles onto Titan's surface. Just like clouds on Earth, clouds on Titan form through a cycle of evaporation and condensation, with methane vapor rising from the surface, forming clouds and falling back down as precipitation. Huygens data suggest the presence of layered methane clouds in Titan's troposphere, at altitudes between about 5 and 20 miles (8 and 30 kilometers). Titan's "hydrological" cycle causes visible changes on the moon's surface.

Organic Sand Seas

Seas of sand dunes, like those in Earth's Arabian desert, are observed in the dark equatorial regions of Titan. Scientists believe the sand is not made of silicates as on Earth, but of solid water ice coated with hydrocarbons that fall from the atmosphere. Images show Titan's dunes are gigantic, reaching, on average, 0.6 to 1.2 miles (1 to 2 kilometers) wide, hundreds of miles (kilometers) long and around 300 feet (100 meters) high.

The location of the Huygens probe's resting place, a soft, sandy riverbed, was only confirmed after some time by the detection of two dark, longitudinal sand dunes, about 20 miles (30 kilometers) north of the landing site. The elusive landforms were visible in images from both Cassini radar and the probe.

First Determination of Depth for an Extraterrestrial Sea

Ligeia Mare, Titan's second-largest sea, was revealed to be about 560 feet (170 meters) deep. This represents the first time scientists have been able to determine the depth of a body of open liquid on the surface of another world. This was possible, in part, because the liquid turned out to be mostly clear methane, allowing the radar signal to pass through it easily.

River Channels and Ice Cobbles

Images taken during the Huygens probe's descent revealed river channels and flood plains. The probe's cameras unveiled a plateau with a large number of dark channels cut into it, forming drainage networks that bore many similarities to those on Earth. The narrow channels converged into broad rivers, which drained into a broad, dark, lowland region. Earth-like river rocks, composed of water ice, were also observed at the Huygens probe landing site. Radar evidence from Cassini suggests that flash flooding has sculpted streambeds on Titan with these rounded cobbles of water ice, which likely originated in water-ice bedrock in higher terrain.

The Collapse of the Detached Haze

The massive atmosphere of Titan is shrouded in thick layers of photochemical smog. One of the "detached" layers has fallen in altitude from over 310 miles to only 240 miles (about 500 kilometers to only 380 kilometers) between 2006 and 2010. The changing altitudes indicate that Titan's smog layers are coupled to a seasonal climate cycle.

Rich Chemistry in the Atmosphere, including Propylene

The Huygens probe made the first direct measurements of Titan's lower atmosphere. Data returned by the probe included altitude profiles of the gaseous constituents, isotopic ratios and trace gases (including organic compounds). Huygens also directly sampled aerosols in the atmosphere and confirmed that carbon and nitrogen are their major constituents. Cassini detected propylene, a chemical used to make household plastic, in Titan's atmosphere. This is the first definitive detection of the plastic ingredients on any moon or planet, other than Earth. Other chemicals observed indicate a rich and complex chemistry originating from methane and nitrogen and evolving into complex molecules, eventually forming the smog that surrounds the icy moon.

Argon-40 Isotope in the Atmosphere

Huygens' detection of Argon-40, an isotope or type of the element argon, in Titan's atmosphere indicates that the interior of Titan is still active. This is unusual in a moon and one of the first clues of subsurface liquid water on Titan. The presence of the Huygens probe on Titan's surface was essential in detecting this substance, as it is mostly concentrated toward the bottom of the atmosphere (due to its relatively heavier weight compared to the lighter molecules comprising the atmosphere).

Liquid Water Subsurface Ocean

Cassini's numerous gravity measurements of Titan revealed that this moon is hiding an internal, liquid water/ammonia ocean underneath its surface. Huygens also detected radio signals during its descent that strongly suggested the presence of an ocean 35 to 50 miles (55 to 80 kilometers) below the moon's surface. The discovery of a global ocean of liquid water adds Titan to the handful of worlds in our solar system that could potentially contain habitable environments.

-------------------------------------------------

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington. JPL designed, developed and assembled the Cassini orbiter. NASA supplied two instruments on the Huygens probe, the Descent Imager/Spectral Radiometer and the Gas Chromatograph Mass Spectrometer.

More information about Cassini is available at the following sites:

http://www.nasa.gov/cassini

http://saturn.jpl.nasa.gov


 

 



This message was sent to chantybanty1.chanti@blogger.com from:

NASA Jet Propulsion Laboratory, jplnewsroom@jpl.nasa.gov, NASA's Jet Propulsion Laboratory | 4800 Oak Grove Dr | Pasadena, CA 91109

Manage Your Subscription

Tuesday, January 13, 2015

JPL News - Day in Review

 

DAY IN REVIEW
Asteroid to Fly by Earth Safely on January 26
The January 26 flyby of asteroid 2004 BL86 will be the closest by any known space rock this large until an asteroid flies past Earth in 2027.

Read the full story
NASA Mountaintop Sensor Finds High Methane over LA
NASA instruments on a mountaintop show that Los Angeles' annual methane emissions are 18 to 61 percent higher than the best previous estimates.

Read the full story

 



This message was sent to chantybanty1.chanti@blogger.com from:

NASA Jet Propulsion Laboratory, jplnewsroom@jpl.nasa.gov, NASA's Jet Propulsion Laboratory | 4800 Oak Grove Dr | Pasadena, CA 91109

Manage Your Subscription

Monday, January 12, 2015

Upcoming Educator Workshop: Lunar and Meteorite Sample Certification

 

JPL EDUCATION / WORKSHOPS
Columbia Memorial Space Center Teacher Workshop - Lunar and Meteorite Sample Certification
City of Downey Columbia Memorial Space Center Presents:
Lunar and Meteorite Sample Certification

Date: Saturday, Jan. 17, 2015, 10 a.m. to 12 p.m.

(Plus Challenger Learning Center Mission Simulation: "Rendezvous with Comet Halley" from 1 p.m. to 3 p.m.

Target Audience: Pre-service and credentialed teachers

Location: Columbia Memorial Space Center, Downey, California

Overview: NASA makes actual lunar samples from the historic Apollo missions available to lend to teachers. Attend this certification workshop to bring the excitement of real lunar rocks and regolith samples to your students. This certification also includes meteorite disks containing samples of extraterrestrial material collected from the frozen expanses of Antartica.  

Reserve your spot by calling (562) 231-1200 or registering via the City of Downey's ActiveNet portal. Pre-registration is required. Participants must bring their teacher or student ID. Lunch is provided.

Throughout 2014 and into 2015, the City of Downey Columbia Memorial Space Center is inviting fully credentialed and pre-service teachers to learn and explore by joining its informative and innovative workshops. The workshops are free to pre-service and fully credentialed teachers and are taught by instructors from NASA's Jet Propulsion Laboratory and Texas Instruments as well as science consultants.

Visit the Columbia Memorial Space Center's monthly calendar for a full listing of upcoming teacher workshops.

For a listing of educator workshops from NASA/JPL, visit the JPL Education website, at: http://www.jpl.nasa.gov/education/index.cfm?page=387

 



This message was sent to chantybanty1.chanti@blogger.com from:

NASA Jet Propulsion Laboratory, jplnewsroom@jpl.nasa.gov, NASA's Jet Propulsion Laboratory | 4800 Oak Grove Dr | Pasadena, CA 91109

Manage Your Subscription

Thursday, January 8, 2015

Schools Invited to Name Five Craters on Mercury

 

JPL EDUCATION / CONTESTS
Schools Invited to Name Five Craters on Mercury
Schools Invited to Name Five Craters on Mercury

NASA's MESSENGER mission and the International Astronomical Union (IAU) are giving schools the chance to officially name five scientifically significant craters on Mercury. The deadline for submission is January 15, 2015.

Schools and school districts can participate by visiting the contest website (http://namecraters.carnegiescience.edu) and filling out the online form. Submissions must be in accordance with IAU rules, which require Mercury's impact craters be named in honor of people who have made outstanding or fundamental contributions to the arts and humanities; who have been recognized as historically significant figures for more than 50 years; and who have been dead at least three years. Learn more about the IAU's naming conventions and read the official rules, here: http://namecraters.carnegiescience.edu/rules-for-naming-craters-on-mercury

The entries will be reviewed by MESSENGER team representatives and expert panels, and 15 finalists' names will be submitted to the IAU for selection of the 5 winners. Winning submissions will be announced in late March/April 2015.

While only a few submissions will be selected, teachers should consider the myriad teachable moments afforded by this competition in terms of researching important persons in the arts and humanities; learning about Mercury, planetary science and the MESSENGER spacecraft.

The MESSENGER spacecraft arrived at Mercury in March 2011 and became the first spacecraft to orbit the planet, returning thousands of images and yielding a high-resolution global map. This spring, the historic planetary mission will come to its planned mission end as the tiny craft succumbs to gravity and impacts Mercury. It is the goal of the MESSENGER education and public outreach team to celebrate this remarkable story of human exploration with the public in order to foster awareness of the mission and planetary science, and to recognize that human exploration over the ages has been undertaken across a trans-disciplinary tapestry of the arts and sciences.

Learn more about the MESSENGER mission at: http://messenger.jhuapl.edu/index.php

MESSENGER was designed and built by the Applied Physics Laboratory, Laurel, Md. The lab manages and operates the mission for NASA's Science Mission Directorate in Washington. The mission is part of NASA's Discovery Program, managed for the directorate by the agency's Marshall Space Flight Center in Huntsville, Ala.

 



This message was sent to chantybanty1.chanti@blogger.com from:

NASA Jet Propulsion Laboratory, jplnewsroom@jpl.nasa.gov, NASA's Jet Propulsion Laboratory | 4800 Oak Grove Dr | Pasadena, CA 91109

Manage Your Subscription